Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(6): 1333-1340.e6, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38417445

RESUMEN

Behavior differs across individuals, ranging from typical to atypical phenotypes.1 Understanding how differences in behavior relate to differences in neural activity is critical for developing treatments of neuropsychiatric and neurodevelopmental disorders. One hypothesis is that differences in behavior reflect individual differences in the dynamics of how information flows through the brain. In support of this, the correlation of neural activity between brain areas, termed "functional connectivity," varies across individuals2 and is disrupted in autism,3 schizophrenia,4 and depression.5 However, the changes in neural activity that underlie altered behavior and functional connectivity remain unclear. Here, we show that individual differences in the expression of different patterns of cortical neural dynamics explain variability in both functional connectivity and behavior. Using mesoscale imaging, we recorded neural activity across the dorsal cortex of behaviorally "typical" and "atypical" mice. All mice shared the same recurring cortex-wide spatiotemporal motifs of neural activity, and these motifs explained the large majority of variance in cortical activity (>75%). However, individuals differed in how frequently different motifs were expressed. These differences in motif expression explained differences in functional connectivity and behavior across both typical and atypical mice. Our results suggest that differences in behavior and functional connectivity are due to changes in the processes that select which pattern of neural activity is expressed at each moment in time.


Asunto(s)
Trastorno del Espectro Autista , Animales , Ratones , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Encéfalo , Mapeo Encefálico/métodos , Fenotipo
2.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293241

RESUMEN

Because opioid withdrawal is an intensely aversive experience, persons with opioid use disorder (OUD) often relapse to avoid it. The lateral septum (LS) is a forebrain structure that is important in aversion processing, and previous studies have linked the lateral septum (LS) to substance use disorders. It is unclear, however, which precise LS cell types might contribute to the maladaptive state of withdrawal. To address this, we used single-nucleus RNA-sequencing to interrogate cell type specific gene expression changes induced by chronic morphine and withdrawal. We discovered that morphine globally disrupted the transcriptional profile of LS cell types, but Neurotensin-expressing neurons (Nts; LS-Nts neurons) were selectively activated by naloxone. Using two-photon calcium imaging and ex vivo electrophysiology, we next demonstrate that LS-Nts neurons receive enhanced glutamatergic drive in morphine-dependent mice and remain hyperactivated during opioid withdrawal. Finally, we showed that activating and silencing LS-Nts neurons during opioid withdrawal regulates pain coping behaviors and sociability. Together, these results suggest that LS-Nts neurons are a key neural substrate involved in opioid withdrawal and establish the LS as a crucial regulator of adaptive behaviors, specifically pertaining to OUD.

3.
Front Mol Neurosci ; 16: 1176823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37603775

RESUMEN

Improvements in the speed and cost of expression profiling of neuronal tissues offer an unprecedented opportunity to define ever finer subgroups of neurons for functional studies. In the spinal cord, single cell RNA sequencing studies support decades of work on spinal cord lineage studies, offering a unique opportunity to probe adult function based on developmental lineage. While Cre/Flp recombinase intersectional strategies remain a powerful tool to manipulate spinal neurons, the field lacks genetic tools and strategies to restrict manipulations to the adult mouse spinal cord at the speed at which new tools develop. This study establishes a new workflow for intersectional mouse-viral strategies to dissect adult spinal function based on developmental lineages in a modular fashion. To restrict manipulations to the spinal cord, we generate a brain-sparing Hoxb8FlpO mouse line restricting Flp recombinase expression to caudal tissue. Recapitulating endogenous Hoxb8 gene expression, Flp-dependent reporter expression is present in the caudal embryo starting day 9.5. This expression restricts Flp activity in the adult to the caudal brainstem and below. Hoxb8FlpO heterozygous and homozygous mice do not develop any of the sensory or locomotor phenotypes evident in Hoxb8 heterozygous or mutant animals, suggesting normal developmental function of the Hoxb8 gene and protein in Hoxb8FlpO mice. Compared to the variability of brain recombination in available caudal Cre and Flp lines, Hoxb8FlpO activity is not present in the brain above the caudal brainstem, independent of mouse genetic background. Lastly, we combine the Hoxb8FlpO mouse line with dorsal horn developmental lineage Cre mouse lines to express GFP in developmentally determined dorsal horn populations. Using GFP-dependent Cre recombinase viruses and Cre recombinase-dependent inhibitory chemogenetics, we target developmentally defined lineages in the adult. We show how developmental knock-out versus transient adult silencing of the same ROR𝛃 lineage neurons affects adult sensorimotor behavior. In summary, this new mouse line and viral approach provides a blueprint to dissect adult somatosensory circuit function using Cre/Flp genetic tools to target spinal cord interneurons based on genetic lineage.

4.
Biol Psychiatry Glob Open Sci ; 2(4): 460-469, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36324654

RESUMEN

Background: Excessive repetitive behavior is a debilitating symptom of several neuropsychiatric disorders. Parvalbumin-positive inhibitory interneurons in the dorsal striatum have been linked to repetitive behavior, and a sizable portion of these cells are surrounded by perineuronal nets (PNNs), specialized extracellular matrix structures. Although PNNs have been associated with plasticity and neuropsychiatric disease, no previous studies have investigated their involvement in excessive repetitive behavior. Methods: We used histochemistry and confocal imaging to investigate PNNs surrounding parvalbumin-positive cells in the dorsal striatum of 4 mouse models of excessive repetitive behavior (BTBR, Cntnap2, Shank3, prenatal valproate treatment). We then investigated one of these models, the BTBR mouse, in detail, with DiI labeling, in vivo and in vitro recordings, and behavioral analyses. We next degraded PNNs in the dorsomedial striatum (DMS) using the enzyme chondroitinase ABC and assessed dendritic spine density, electrophysiology, and repetitive behavior. Results: We found a greater percentage of parvalbumin-positive interneurons with PNNs in the DMS of all 4 mouse models of excessive repetitive behavior compared with control mice. In BTBR mice, we found fewer dendritic spines on medium spiny neurons (targets of parvalbumin-positive interneurons) and differences in neuronal oscillations as well as inhibitory postsynaptic potentials compared with control mice. Reduction of DMS PNNs in BTBR mice altered dendritic spine density and inhibitory responses and normalized repetitive behavior. Conclusions: These findings suggest that cellular abnormalities in the DMS are associated with maladaptive repetitive behaviors and that manipulating PNNs can restore normal levels of repetitive behavior while altering DMS dendritic spines and inhibitory signaling.

5.
Cell Rep ; 39(9): 110874, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649378

RESUMEN

Cholinergic interneurons (ChINs) in the nucleus accumbens (NAc) have been implicated in the extinction of drug associations, as well as related plasticity in medium spiny neurons (MSNs). However, since most previous work relied on artificial manipulations, whether endogenous acetylcholine signaling relates to drug associations is unclear. Moreover, despite great interest in the opposing effects of dopamine on MSN subtypes, whether ChIN-mediated effects vary by MSN subtype is also unclear. Here, we find that high endogenous acetylcholine event frequency correlates with greater extinction of cocaine-context associations across male mice. Additionally, extinction is associated with a weakening of glutamatergic synapses across MSN subtypes. Manipulating ChIN activity bidirectionally controls both the rate of extinction and the associated plasticity at MSNs. Our findings indicate that NAc ChINs mediate drug-context extinction by reducing glutamatergic synaptic strength across MSN subtypes, and that natural variation in acetylcholine signaling may contribute to individual differences in extinction.


Asunto(s)
Cocaína , Acetilcolina , Animales , Colinérgicos/farmacología , Cocaína/farmacología , Interneuronas , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología
6.
Hippocampus ; 31(4): 375-388, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33432721

RESUMEN

Adult-born granule cells (abGCs) integrate into the hippocampus and form connections with dentate gyrus parvalbumin-positive (PV+) interneurons, a circuit important for modulating plasticity. Many of these interneurons are surrounded by perineuronal nets (PNNs), extracellular matrix structures known to participate in plasticity. We compared abGC projections to PV+ interneurons with negative-to-low intensity PNNs to those with high intensity PNNs using retroviral and 3R-Tau labeling in adult mice, and found that abGC mossy fibers and boutons are more frequently located near PV+ interneurons with high intensity PNNs. These results suggest that axons of new neurons preferentially stabilize near target cells with intense PNNs. Next, we asked whether the number of abGCs influences PNN formation around PV+ interneurons, and found that near complete ablation of abGCs produced a decrease in the intensity and number of PV+ neurons with PNNs, suggesting that new neuron innervation may enhance PNN formation. Experience-driven changes in adult neurogenesis did not produce consistent effects, perhaps due to widespread effects on plasticity. Our study identifies abGC projections to PV+ interneurons with PNNs, with more presumed abGC mossy fiber boutons found near the cell body of PV+ interneurons with strong PNNs.


Asunto(s)
Fibras Musgosas del Hipocampo , Parvalbúminas , Animales , Matriz Extracelular/metabolismo , Interneuronas/metabolismo , Ratones , Fibras Musgosas del Hipocampo/metabolismo , Neurogénesis , Parvalbúminas/metabolismo
7.
Neurobiol Learn Mem ; 155: 50-59, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29908973

RESUMEN

Increases in the number and/or the size of dendritic spines, sites of excitatory synapses, have been linked to different types of learning as well as synaptic plasticity in several brain regions, including the hippocampus, sensory cortex, motor cortex, and cerebellum. By contrast, a previous study reported that training on a maze task requiring the dorsal striatum has no effect on medium spiny neuron dendritic spines in this area. These findings might suggest brain region-specific differences in levels of plasticity as well as different cellular processes underlying different types of learning. No previous studies have investigated whether dendritic spine density changes may be localized to specific subpopulations of medium spiny neurons, nor have they examined dendritic spines in rats trained on a dorsolateral striatum-dependent maze task in comparison to rats exposed to the same type of maze in the absence of training. To address these questions further, we labeled medium spiny neurons with the lipophilic dye DiI and stained for the protein product of immediate early gene zif 268, an indirect marker of neuronal activation, in both trained and untrained groups. We found a small but significant increase in dendritic spine density on medium spiny neurons of the dorsolateral striatum after short-term intensive training, along with robust increases in the density of spines with mushroom morphology coincident with reductions in the density of spines with thin morphology. However, these results were not associated with zif 268 expression. Our findings suggest that short-term intensive training on a dorsolateral striatum-dependent maze task induces rapid increases in dendritic spine density and maturation on medium spiny neurons of the dorsolateral striatum, an effect which may contribute to early acquisition of the learned response in maze training.


Asunto(s)
Conducta Animal/fisiología , Cuerpo Estriado/fisiología , Espinas Dendríticas/fisiología , Aprendizaje por Laberinto/fisiología , Plasticidad Neuronal/fisiología , Animales , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
8.
PLoS One ; 13(4): e0195726, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29664924

RESUMEN

The medial prefrontal cortex (mPFC) is important for cognitive flexibility, the ability to switch between two task-relevant dimensions. Changes in neuronal oscillations and alterations in the coupling across frequency ranges have been correlated with attention and cognitive flexibility. Here we show that astrocytes in the mPFC of adult male Sprague Dawley rats, participate in cognitive flexibility through the astrocyte-specific Ca2+ binding protein S100ß, which improves cognitive flexibility and increases phase amplitude coupling between theta and gamma oscillations. We further show that reduction of astrocyte number in the mPFC impairs cognitive flexibility and diminishes delta, alpha and gamma power. Conversely, chemogenetic activation of astrocytic intracellular Ca2+ signaling in the mPFC enhances cognitive flexibility, while inactivation of endogenous S100ß among chemogenetically activated astrocytes in the mPFC prevents this improvement. Collectively, our work suggests that astrocytes make important contributions to cognitive flexibility and that they do so by releasing a Ca2+ binding protein which in turn enhances coordinated neuronal oscillations.


Asunto(s)
Astrocitos/fisiología , Cognición/fisiología , Subunidad beta de la Proteína de Unión al Calcio S100/fisiología , Ácido 2-Aminoadípico/toxicidad , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Señalización del Calcio/fisiología , Cognición/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/toxicidad , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Masculino , Neuronas/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/patología , Corteza Prefrontal/fisiología , Ratas , Ratas Sprague-Dawley , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología
9.
eNeuro ; 3(5)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27785461

RESUMEN

Autism spectrum disorder (ASD) is often associated with cognitive deficits and excessive anxiety. Neuroimaging studies have shown atypical structure and neural connectivity in the hippocampus, medial prefrontal cortex (mPFC), and striatum, regions associated with cognitive function and anxiety regulation. Adult hippocampal neurogenesis is involved in many behaviors that are disrupted in ASD, including cognition, anxiety, and social behaviors. Additionally, glial cells, such as astrocytes and microglia, are important for modulating neural connectivity during development, and glial dysfunction has been hypothesized to be a key contributor to the development of ASD. Cells with astroglial characteristics are known to serve as progenitor cells in the developing and adult brain. Here, we examined adult neurogenesis in the hippocampus, as well as astroglia and microglia in the hippocampus, mPFC, and striatum of two models that display autism-like phenotypes, Cntnap2-/- and Shank3+/ΔC transgenic mice. We found a substantial decrease in the number of immature neurons and radial glial progenitor cells in the ventral hippocampus of both transgenic models compared with wild-type controls. No consistent differences were detected in the number or size of astrocytes or microglia in any other brain region examined. Future work is needed to explore the functional contribution of adult neurogenesis to autism-related behaviors as well as to temporally characterize glial plasticity as it is associated with ASD.


Asunto(s)
Astrocitos/patología , Trastorno Autístico/patología , Microglía/patología , Neuronas/patología , Animales , Astrocitos/metabolismo , Trastorno Autístico/metabolismo , Recuento de Células , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Inmunohistoquímica , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos , Microglía/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis/fisiología , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología
10.
Front Neuroendocrinol ; 41: 71-86, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26996817

RESUMEN

A variety of experiences have been shown to affect the production of neurons in the adult hippocampus. These effects may be mediated by experience-driven hormonal changes, which, in turn, interact with factors such as sex, age and life history to alter brain plasticity. Although the effects of physical experience and stress have been extensively characterized, various types of social experience across the lifespan trigger profound neuroendocrine changes in parallel with changes in adult neurogenesis. This review article focuses on the influence of specific social experiences on adult neurogenesis in the dentate gyrus and the potential role of hormones in these effects.


Asunto(s)
Giro Dentado/fisiología , Hormonas Esteroides Gonadales/fisiología , Neurogénesis/fisiología , Conducta Sexual Animal/fisiología , Conducta Social , Estrés Psicológico/fisiopatología , Animales , Giro Dentado/metabolismo , Estrés Psicológico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...